

Associate Degree Program

Specialization	Common			
Course Number	020202121			
Course Title	Engineering Materials			
Credit Hours	2			
Theoretical Hours	2			
Practical Hours	0			

Al-Balqa' Applied University

جامعة البلقاء التطبيقية

Brief Course Description:

Introduction to engineering materials, definition, classification: Metallic and non-metallic, alloys and composites, woods, ceramics, polymers and their characteristics, material selection and industrial applications of different types of materials and material selection. Mechanical properties: Strength, hardness, elasticity, plasticity, ductility, toughness, brittleness, stiffness, hardness, creep and fatigue. Structure of materials: Bonding, Packing, dislocation. Metallic Solid solutions, phase equilibrium, Phase diagrams, Iron carbon phase diagram. Control of mechanical properties by manipulation and heat treatment. Electrical characteristics and Thermal properties, conductors, insulators and semiconductors. Magnetic properties.

Course Objectives:

The course is designed to introduce students in engineering program specializations to the basic concepts of engineering materials and their applications.

Detailed Course Outline:

Unit Number	Unit Title	Unit Content	Time Needed		
1.	Introduction to engineering materials	 Importance Classification of engineering materials: metals, ceramics, polymers, alloys and composites 			
2.	Mechanical properties	 Strength, hardness, elasticity, plasticity, ductility, toughness, brittleness, stiffness, hardness Engineering stress-strain relation Engineering stress-strain diagram Creep and fatigue 			
3.	The structure of materials	 General overview Atoms Crystals and grains Unit cell Correlation of data on unit cells with measurements of density, atomic radius, planer density, and linear density Crystal Structures: FCC, BCC, HCP Effect of mechanical properties on metal structure 			
4.	Solid solutions and phase equilibrium	 Types of solid solutions Properties of solid solutions Eutectiferous alloys Equilibrium diagrams Effect of alloying upon behavior during solidification 			

Al-Balqa' Applied University

جامعة البلهاء التطبيهية

		 Complete solubility in solid state 					
		 Non solubility in solid state 					
		 Limited solubility in solid state 					
5. Control of		Control of grains					
	mechanical	 Cold working 					
	properties by	■ Hot working					
	manipulation and	 Strengthening mechanism 					
	heat treatment	 Heat treatment 					
6.	Electrical	Electrical conductivity					
	properties of	 Conduction and carriers 					
	materials	 Conductors, semiconductors, insulators 					
		 Applications 					
7.	Magnetic	Magnetic circuit and magnetic permeability					
	properties of	 Magnetic domains 					
materials		 Magnetic saturation 					
		Effect of temperature on magnetization					

Evaluation Strategies:

— · · · · · · · · · · · · · · · · · · ·						
Exams		Percentage	Date			
Exams	First Exam	20%				
	Second Exam	20%				
	Final Exam	50%				
Quizzes		10%				

Teaching Methodology:

Lectures and presentations

Text Book

1. Engineering Materials and their applications, Richard A. Flinn and Paul K. Torjon, Houghton Mifflin Company.